A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using 111In-exendin
نویسندگان
چکیده
BACKGROUND Quantitative single photon emission computed tomography (SPECT) is challenging, especially for pancreatic beta cell imaging with 111In-exendin due to high uptake in the kidneys versus much lower uptake in the nearby pancreas. Therefore, we designed a three-dimensionally (3D) printed phantom representing the pancreas and kidneys to mimic the human situation in beta cell imaging. The phantom was used to assess the effect of different reconstruction settings on the quantification of the pancreas uptake for two different, commercially available software packages. METHODS 3D-printed, hollow pancreas and kidney compartments were inserted into the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom casing. These organs and the background compartment were filled with activities simulating relatively high and low pancreatic 111In-exendin uptake for, respectively, healthy humans and type 1 diabetes patients. Images were reconstructed using Siemens Flash 3D and Hermes Hybrid Recon, with varying numbers of iterations and subsets and corrections. Images were visually assessed on homogeneity and artefacts, and quantitatively by the pancreas-to-kidney activity concentration ratio. RESULTS Phantom images were similar to clinical images and showed comparable artefacts. All corrections were required to clearly visualize the pancreas. Increased numbers of subsets and iterations improved the quantitative performance but decreased homogeneity both in the pancreas and the background. Based on the phantom analyses, the Hybrid Recon reconstruction with 6 iterations and 16 subsets was found to be most suitable for clinical use. CONCLUSIONS This work strongly contributed to quantification of pancreatic 111In-exendin uptake. It showed how clinical images of 111In-exendin can be interpreted and enabled selection of the most appropriate protocol for clinical use.
منابع مشابه
A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging
متن کامل
Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3‐dimensional brain phantom
Objective: The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray mater, white matter and bone regions. It was filled with 123I solution (20...
متن کاملA New Approach for Quantitative Evaluation of Reconstruction Algorithms in SPECT
ABTRACT Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire t...
متن کاملPerformance Evaluation of FBP Reconstruction in SPECT Imaging
Introduction: The purpose of this study is to define the optimal parameters for the tomographic reconstruction procedure in a routine single photon emission tomography. The Hoffman brain phantom is modified to evaluate the reconstruction method. The phantom was imaged in a 3 and 2-dimensional conformation and the results were compared. Materials and Methods: The 2D phant...
متن کاملA comparison of 2D and 3D kidney absorbed dose measures in patients receiving 177Lu-DOTATATE
Objective(s): To investigate and compare quantitative accuracy of kidney absorbed dose measures made from both 2D and 3D imaging in patients receiving 177LuDOTATATE (Lutate) for treatment of neuroendocrine tumours (NETs). Methods: Patients receiving Lutate therapy underwent both whole body planar imaging and SPECT/CT imaging over the kidneys at time points 0.5, 4, 24, and 96-120 hours after inj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2016